Second Order Impulsive Neutral Functional Differential Inclusions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence Results for Second-order Impulsive Functional Differential Inclusions

respectively, where F : [0,T]×D→ (Rn) is amultivaluedmap,D = {ψ : [−r,0]→Rn; ψ is continuous everywhere except for a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+) exist with ψ(t̃−)= ψ(t̃)}, φ ∈D, p : [0,T]→R+ is continuous, η ∈Rn, (Rn) is the family of all nonempty subsets of Rn, 0 < r < ∞, 0 = t0 < t1 < ··· < tm < tm+1 = T , Ik, Jk : Rn → Rnk = 1, . . . ,m are continuous functions. y(t− k )...

متن کامل

Controllability of Second Order Impulsive Neutral Functional Differential Inclusions with Infinite Delay

This paper is concerned with controllability of a partial neutral functional differential inclusion of second order with impulse effect and infinite delay. We introduce a new phase space to prove the controllability of an inclusion which consists of an impulse effect with infinite delay. We claim that the phase space considered by different authors is not correct. We establish the controllabili...

متن کامل

Controllability of Impulsive Neutral Functional Differential Inclusions in Banach Spaces

and Applied Analysis 3 (A 1 ) The linear operatorW: L(J, U) → X defined by

متن کامل

Existence Results for Impulsive Partial Neutral Functional Differential Inclusions

In this paper we prove existence results for first order semilinear impulsive neutral functional differential inclusions under the mixed Lipschitz and Carathéodory conditions.

متن کامل

Impulsive neutral functional differential inclusions in Banach spaces

In this paper, we first present an impulsive version of Filippov’s Theorem for first-order neutral functional differential inclusions of the form, d dt [y(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ J\{t1, . . . , tm}, y(t+k )− y(tk ) = Ik(y(tk )), k = 1, . . . , m, y(t) = φ(t), t ∈ [−r, 0], where J = [0, b], F is a set-valued map and g is a single-valued function. The functions Ik characterize the jum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2008

ISSN: 1225-6951

DOI: 10.5666/kmj.2008.48.1.001